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A NEW FORMULATION OF THE MULTTICOMPONENT TRANSPORT EQUATIONS
FOR USE IN LAMINAR BOUNDARY LAYER PROBLEMS

Marvin E. Goldstein
Massachusetts Institute of Technology, Cambridge, Massachusetts

J— gLqzlo\(ﬂ

A new formulation of the mlticomponent boundary layer prob-
lem which is convenient for numerical calculations is developed.
This is accomplished by a modification of the usual Chapman-Enskog
procedure which is intermediate between that procedure and Grad's
thirteen-moment method. The relations which are developed do not
involve transport coefficients but rather expressions for the
gradients of the physical variables as linear combinations of the
fluxes. The complete set of boundary layer equations turn out to
be a set of first-order differential equations and a set of alge-
braic equations which are linear in the fluxes. These expressions
contain tﬁe averaged cross sections instead of transport coeffi-

cients.



The method is extended to include chemically reacting mixtures
of polyatomic molecules. It is shown that the method can be fur-
ther extended to two temperature fluids when one of the species has
a small mass and to mixtures where it is necessary to retain higher-
order terms in the Chapman-Enskog procedure in evaluating the colli-
sion integration for some of the species.

The results are applied to the specific case of the stagnation

point boundary layer.
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I. INTRODUCTION

In order to solve boundary layer problems with many species pres-
ent, numerical techniques must invariably be used. The thermal con-
ductivity and diffusion coefficients appearing in the boundary layer
equations are usually complicated functions of temperature and concen-
1:rza.1:ion.l In the cases where similarity solutions exist, one usually
trys to reduce the governing equations to a set of first-order ordinary

1,2 It is

differential equations plus a set of algebraic equations.
usual to neglect thermal diffusion in this procedure.:L
In this report we have attempted to formulate the boundary layer
problem with many species present in a way that is convenient for numeri-
cal calculations. To accomplish this we have modified the usual Chapman-
Enskog3’ 4 procedure for obtaining normal solutions to the Boltzmann equa-
tion for monotonic gases which is presented in Hirschfelder, Curtiss,
and Bird> (hereafter shortened to HCB). We begin (part II) with the
linear integral equations for the first-order distributions function
given in HCB, but instead of seeking solutions to these equations which
are proportional to the gradients of the physical va.riables* as was done
in HCB, we have chosen to start with a more general form of the solutions
vwhich we allowed to contain unknown vector function of the fluxes** and
the physical variables (see eq. 2.7 and compare with eg. T7.3-29 of HCB).
The first few of these undetermined vector functions were then evaluated

by substituting the solutions into the definitions of the heat and mass

fluxes for the individual species. The resulting expressions were then

*
i.e., the temperature, pressure, concentration, etc.

**e.g., the heat flux moment of the distribution function
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used to eliminate these functions from the solutions and thus to express
the solutions in terms of the fluxes instead of the forces (i.e., the
gradients of physical variables) as was done in HCB. The remaining arbi-
trary functions were then determined by substituting these expressions
for the solutions into the linear integral equations given in HCB for the
first-order distribution functions, then multiplying both sides of the
resulting expressions by the Sonine poclynomials of order 3/2 and of arbi-
trary degrees and integrating to match the coefficients.*

After using the orthogonality relations for the Sonine polynomials,
this led to a set of equations which determine the remaining unknown
functions appearing in the solutions. The first few of these equations
are expressions for the forces in terms of the fluxes. The remaining
equations are merely algebraic expressions which determine the unknown
functions appearing in the solutions. The important thing here is that
the first few of these equations turn out to be of a form in which the
gradients of the physical quantities are given explicitly as linear com-
binations of the fluxes instead of being the other way around as they are
in the usual Chapwan-Enskog procedure. It is felt that this form is more
convenient for numerical calculations when applied to boundary layer
problems than the usual relations in terms of transport properties.**

These equations were then truncated (part III) to give the usual
first-order approximations in the polynowmial expansions. The truncated
system of equations was then rearranged and expressed in terms of the

averaged cross sections. This procedure was used for the heat transfer

*
i.e., by taking moments of the equation

*%
For example, compare equations (7.4-64) through (7.4-66) and equations
(T.4-55) of HCB with equation (18.2) below.
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and diffusion part of the solution. The shear stress was treated in
almost the standard way, however, with only slight modification.

The method used here is essentially intermediate between Grad's
moment met.hod6 and the Chapman-Enskog procedure. A comparison of
equations (4.7) through (4.21) with equations (3.8) and (T7.2) through
(7.5) of reference 6 shows that the form of the resulting equations
is quitesimilar. The principal advantage of this method over the
moment method is that the amount of manipulation necessary to derive
the equations is considerably reduced. This is due to the fact that
we expanded Boltzmann's equation in a uniformity parameter (the ratio
of the mean free path to a characteristic macroscopic length) before
any moments where taken. This resulted in a simpler set of equations
which had to be carried through the calculations. Since the method
is closer to the Chapmann-Enskog procedure than the 13 moment method,
it is easier to take over results which have been tabulated or carried
out within the framework of that procedure which has been extensively
studied.

The method has additional advantages. It can be easily extended
to two temperature fluids and to higher order (in the polynomial expan-
sions) for certain individual components while only retaining the lower
order terms for all the other components. This is useful when electrons
are present.7

In order to test the method we have used the results obtained in
this report to calculate the thermal conductivity of a single-component
gas and the binary diffusion coefficient of a tﬁo-component isoctherml

mixture (see Appendix B). These were in agreement with those given in HCB.



.

In Appendix C we have brought in the Eucken correction so that the
results could be extended to polyatomic gases. This was accomplished
by comparing the results obtained here with those of reference 1l and
then noticing that it was necessary to add a term to the expression for
the heat flux in order to make them agree.

Finally in Part IV these results were applied to the formulation
of the general boundary layer problem of a mixture of reacting gases.
These results of Part III were extended to gases with internal motion
and chemical reactions in the usual way. The boundary layer equations
are written as a set of first~order differential equations plus a set
of algebraic equations which are linear in the fluxes. These equations
are in a more convenient form for numerical calculations than those
which would be obtained by using transport coefficients. The specific
case of the stagnation point boundary layer was treated in detail.

Many of the results used below are taken over directly from HCB.
When this has been done their notation has been used without explana-

tion, but the relevant equation numbers are given.

'
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JI. GENERAL FORMULATION

In this section we develop an 'exact' solution to the linearized
Boltzmann equation for a multi-component mixture. The solution is in
such a form that the forces (i.e., gradient of the properties) are
expressed as a linear combination of the fluxes.

We begin with equation (7.3-26) of HCBL for the purturbation func-

tion ¢i which is:

f§0) 2_. (¥ - 4y) + (b -§—r;’o) - (5- Wf)(xi . 3;“);
* - |
=2 Jffgo) f§0) (¢i' + ¢; - ¢, - #,) g bd bde dV, (2.1)
J

where the ¢i's are related to the purturbation in f,; by
(1) _ (o)
£ = ¢ (2.2)

If we define Oi by:

©; =8, -3 : 5T Yo (2.3)

in

*
The equation for Oi must be:

B 3. .f(o)v _ 21T
n, -i i

. #(0) 5 _ 2y
1 -i 3z £ Y G- =

1

- (0) (0) (o', &
=3 iji fj (ei +6, -8, - ej) 85 bd bd € dllj (2.4)
J

*
See HCB p. 469 for details. (f§°) is the Maxwellian distribution function

for species i and Jj = [ Xl.)
2kT
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Multiplying both sides of this equation by W, Sr(Wie) (where Sr(wiQ) is
' *
the r'th Sonine Polynomial of order 3/2 and argument Wf) and integrat-

ing with respect to »Yi , wWe get:

ng, el 3w, 0D o, - 22 f“”,m 2 - w?) ST av,
T 2
m,

=%"J3: \'l"" f(O)VES(W)dV _%(mﬂ) -33— f(o) wgslsrdw (2.5)

\

1 1
_s . sTad) 110 0 (o' 6 -~ 6. - 6.) &, bab aeav, av.
3 -1 i i J i J i J 1iJ i -1
where we have used equation 4 of section 1.42 of Chapman and CcrwlinglL
and definition (7.2-11) of HCB to get the last relation.

Finally by using the relations (7.3-58) and (7.3-59) of HCB (i.e.,

the orthogonality relations for the Sonine Polynominials), we arrive at:

kT /n 5 3 InT _
-m_i_— -éd 8romKn:‘L or, 81:'1 - (2.6)

(0) .(0) T2y (o '
> Jfffi fj W, S (wi) (oi + oj -9, - oj) 8 5 bdb de 4V, dyj

where 8rn is the kronecker delta. Examination of equation (2.3) and
of equations (7.3-29), (7.3-35), (7.3-26), and (7.3-61) of HCB shows

that the Oi must be of the form:

e, =W, - T «*° s“(w.e) (2.7)

Note that s¥ is designated by sT . in HCB.

3/2




vhere o ® is independent of W, .
w1 i

From equation (2.3) and equations (7.3-29), (T7.4-1), and (7.4-2)

of HCB, it follows thati:

n, V. = JV. o. £{0) ay. (2.8)
1«1

From equation (4.2) of section 1.42 of Chapman and Cowling and definition

(7.2-11) of HCB, we get:

= _1\|% n n (0)
ni‘!-i-g\l?ﬁ{"si fvfs(wf) ;74 s

and finally from equation (7.3-59) of HCB, we get

5 . o.‘em 1
2 % 2% \m 2

<0 _o% (2.9)

or

Now the part of the translatiomal heat flux vector due to the i'th species,

& is given by:

g =3m |V £ @ | (2.10)

while the total heat flux vector q is:

24

*
i.e., We have used the orthogonality relations for the Sonine polynomials.
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9= 4 (2.11)
~ i
We now have:

Q. =1a, fv? v, £0) o ay.
<1 2 1 i«-i 71 i i

-2 mi(i_@) v, #0) o ay
i ]
3
1 1 2kT n 2 (0) .1 n, 2
-5 - Emi(ﬁ;- % o<y (W s (wf) S (wi) aw,

Finally using equation (2.8) and equation (7.3-58) of HCB, we get:

ol

1/2
T - E (2L Tl
\gj_ nj_ kT ‘:‘Yl - 2 (mj_ ) -5 (2.12)

We now notice that since 6, (as given by eq. 2.7) is an odd func-
tion of W., the auxiliary condition given by (7.3-18) and (7.3-20) in
HCB are identically satisfied, and the auxiliary condition (7.3-19) is,

by equation (2.9), equivalent to the condition:

zi: nym J; =0 (2.13)
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After substituting equation (2.7) into equation (2.6;, we arrive at

2kT 5 & 1nT _
\Iﬁ_i_ ng 4 Sro-E9£ 8rl}_

- _ n rny p,n rny N0 .
= % E j{}-ij( ) LT+ (T cc.} (2.14)

rol =
bltﬂ

11/ %1 el 5 5
where
rn -1 (0) .(0) .r n, '2, ! n
disls ¥ * 5w //ffi 23 852w, ["00D) 1, - "D ] -

. ;; bdd de Y, v,

1}

(2.15)

In Appendix (A) we have shown that

250 P =38 [Fed w, 765 1)y, (2.16)
I, D =3y [5°6D) u, s°6D) AN (2.17)

Where g is the unit tensor, the terms multiplying %—'—g on the right-hand
side of equations (2.16) and (2.1T) are defined in Chapman and Cowling
section 4.k by equations (%), (5), and (9) or more specifically by (1)

in section 9.3.

Substituting equations (2.16), and (2.1T) into equation (2.1%) yields:

in 5 & 1nT
611'1'{2;1-;‘91 8]:‘o-lzltar 8rl

TT3 2 omy \[??T_ <t [s°08) w0 3, ]

-§ i:\lmimj n

a;; [ sr(wf) ¥ sn(wg) 33] 1 (2.18)

Cude
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Equations (2.18) constitute a J-fold infinite set of equations where
J is the number of species in the mixture. These determine the J x oo
constants gg? . It should be noted that these are vector equations since
the 5? are vectors; therefore, there is actually a 3-J fold infinity
of scalar equations. Equations (2.9), (2.11), and (2.12) relate the first
two of the ggg to the fluxes, and equation (2.13) adds an additional
restriction on the g§?'s.

The g;?'s of equations (2.18) are flux-like quantities. In fact
the 3§§'s are the mass fluxes,and the ggi's are the conduction heat fluxes
of the individual species. The terms on the left side of these equations
are the forces (or potential gradients). These equations are in the form

of a set of first-order differential equations plus a set of linear alge-

braic equations with all the derivitives appearing on the left-hand side.
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ITI. FIRST-ORDER APPROXIMATION

In this secticon we shall truncate the

and proceed to rearrange and simplify the results.

obtained are written down in terms of average cross

set of egquations (2.18)

The equations finally

ections (ﬂ(i’%) in

HCB's notation) which are tabulated for various molecular potentials.

A comparison of this formulation of the problem (equation (2.18) with

that of HCB shows that it ie necessary to retain the terms involving oC:

and o‘_gi' in order to get the usual first approximation for all transport

*
coefficients. We therefore retain only these terms, and we are left with

a set of 2 x J equations (2.18) which are:

n - —
3“31'31‘ 2Z nym ¥y [Ei"yi]ij

- 23‘3\'?1’;‘; ny Ty [y 5] 4 -

-2 m12 n; Ai [ ¥ sl(wf) 3’1] 1
: Z

R ST [, 765 ;] (3-1)
152kT 221n£T - 2 nm Ei [sl(wiz) v, ¥l

P 2EmE Y [s*0) w,, 1,1,

+§ mf njfi [Sl(Wiz) ¥, sl(w;") Ei] 1]

+§41Tiﬁg oy oy & [sl(wie) ., Sl(wig) yi] 13 (3.2)

*To this approximation all cross coupling effects such as thermal diffu- _
sion are retained. This approximation usually gives the transport coeffi-

cients quite accurately.
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Where we have used eq. (2.9) to eliminate fglg, and we have intro-

duced the quantity %fi defined by

%Eti—Jel;T < (3.3)

Using equations (7.A-1) through (7.A-9) of HCB in equations (3.1)

and (3.2), we get
Y 2 (1,2 5 ~(1,1)
%I 2 N s Z Pk Ry - 3057

a‘l 1) (3.4)

3o 23 oy, - Tel @b 3ol

CeT nm¥, v m TG nE,0lp?
J
m, 2
+ —;ig ny(ni g - m§gj><ﬁ;—i—m—j> py a0 (3.5)

Where i‘ij is the reduced mass defined by

1 1 1
—_— =, (3.6)
F’ij m, m'j

the set of equations (3.5) all contain a temperature gradient on the left-

bhand side. Since, however, algebraic equations are more convenient than
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differential equations, it will be convenient to replace equations (3.5)
by a single differential eguation plus a set of linear algebraic equa-
tions. In order to accomplish this we proceed as follows:
Multiplying equation (3.5) by ni and summing on i, we get upon noting
@,k) k)
, = = 3
that .Qij .Q.ji and p; ;= Ry;

Ls Pz 2 31nT _

2Z Z ninj(miﬁ. + m, 75 )(m = )F'lg 3(2 2)

[
o
(

+%§§ § n;n,( 1'{1 7) [(m +m) ] ""139'(1 &
or
2 P 32 -
where the density ,© is given by
=2 nm (3.8)

Eliminating %g gy 21T

between equations (3.7) and (3.5), we get

23 (3, -T)wZ@3? - 2900
J

3 1,3) 50n(1,2 5,0(1,2)  5~(1,1)\¢
N R FLLE {(ﬂgj ) - 300 - Jafy® - 2airths




3 i 1id
M 15 > 3 0 (1,1)
'75'1"2— % nijsz- nf(m +m)"’a ‘Q'J,?
o
i (2,2)
A 2 nnil n k5 R

By multiplying both sides of this equation by n, and using the Kronecker

delta, we get after introducing different dummy indices:

2 (1,2) _ (1 1)
2%‘1’1- n/(, (8 e SII)P,QJ (QJI )

o Mo+ §o.m n m,
= di_J ) S S ! (2,2)
"I eIy {8 w = P3R5

i

2 2
5.2y Jimj'siiz“‘/_mj'mj"im} (1,1)
+§ L2 4 N F (m, + nfe)g (mj ¥ ml) JI‘Q

(1,3) 2 (1,2 5 (1,2) _ 51 1)
+ n, n - = -
2 7y 208y -8y "Jz {'Q' 29377 -3 @y - 3By
Introducing the mass flux of the i'th species ji defined by
di = Yy (3.9)
the mass fraction of the i'th species c; defined by

c; = my mi//o (3.10)
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| and ‘ﬁi defined by

~—

2 _ 2T 1
fi-ni ml'fl_ni oy Tici

—

We have:

2 323 2By - 3 [5—;%,,—7] @§y?

3.

50(1,1)
23.]1 )

(mj + mi)

+ 8,,m, -c.(m, +m,) B
- SER) ig ¢ iy 4 Jje
R $5 2%"1[ }[(m ¥

j+m£)

+
. ™M
m'\l—;;
M
(¢
A
2

(m, + m,)

I ¢

and we have from equation (3.13)

Equation (3.4) can now be written as:
m;n 8 B85 ~Bp8m. W (1 2)
<4 =3z 2 3 ¢, (—2 )( )(ﬂ
£ i 3kT 3 fj‘e 4 ml+ 3
16 %5 851~ T 8 Q)
2= T 3.3 e (= o'
It will be convenient to introduce 4, defined by
*
- 4 =5 {mid-clzmsj}’

(3-11)

(2,2)

8. u? - 2 - e (o2 - n2)
33 %5 " 8ig e - Calny ’“1} [ ™ ]g(l,l)
2 mj+m1. J

(3.12)
Sﬂ(ly

- &

(3-13)

(3.1%)

s T 6. T8 - Bag) {(13) L2).- 5«2(1,2) s
Jfal‘ft i1 %u [ +m)

1))

1,1)
37

)
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x 8 mjsji"%aﬁ'%(mj'mf)} g 1.2) 30, 1)
gi_T?j:fjfcf{ o PR ST

m.8..— -c(m - my)
3 .

Equation (3.7) can now be written as:

2r 15 kT ?fg% f(ﬁ'@)[ﬂ Y (—’(X')Q. Y (3.16)

From equation (2.11), (2.12), (3.9), and (3-10), we have

a=2 (

1

P

KTy . 1
. o) 5 - kTE = fJ , (3.17)
J J i

and from equations (2.13) and (3.9) we get

T d;- (3.18)
J
It is now convenient to define the following quantities
- 2 ) 32 (1,2) _ 50(1,1)
b5 =3 T (8 811)% g @ ) oo
= 2 My F8i,mp - eylmy v mf)} Fig \ql2,2)
BlJ = kT% 1 {8 mj-}-n,]( (mJ+mj)a j

2 2 2 2
5 831 mj -8, m - ¢, (m© - m}) m
- {' L LI £ (= mi)a(a%’l)

£ (mJ + 1{1()2
p (1,3) 5 (1 2) -3 (12) 5 (1,1))]

(3.20)
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(w}
1]

2 .____L (2’2) 15 (l l)
=3 T i) (a2« 2 G 2)aC (3.21)

ol

5 m.s.i-m s~ Ci(my - 1) LY 1,2)  5q(1,1
Eij %cX{J . +m (m +m)(ﬂ'(f) ﬂ(f))

(3.22)

g
III

WY %851 " 8u " mz)l a®y (e
ij 1 l m‘(+mJ.

Using these definitions we can rewrite equations (3.12), (3.15), and (3.16)

as:

Shyd=2 By £y -2

d J

4; =4 5, £,-8ZF, (3.25)
J = 3

21nT _ 16 .26

2z, 5 EJ: D.if‘j (3.20)

These relations (egs. (3.24) to (3.26)) are the desired results. .éj is
the mass flux of the j'th species whereas fj’ which has the dimensions
of a mass flux, is a quantity which, when multiplied by the energy per
unit mass, corresponds to a conduction heat flux of the j'th species.
Up to now we have not considered the viscosity. It is, however,
convenient to take over the relations needed to calculate the viscosity

directly from HCB. From equation (7.4-56) of HCB we mBy write

,7=13 % cj Xj (3'27)
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where

-’f%— by, (1) (3.28)

in

| oo

Y,
J

From equation (7.4-57) of HCB we can write

% G5 ¥ =1 (3.29)
where
5 n, 0o
Gij E - '8_(5— ( )
or from equation (7.4-62) of HCB
5 mjn2
= Epni i (3'30)

and substituting equation (7.4-63) of HCB into equation (3.29), yields

m,
1

‘E‘“—_""—)'é {st(le = 8 ).Q:(l l) '_ m(8
ml+m1

2
Sy 4

- 8,102} (3-31)

Equations (3.31), (3.29), and (3.27) now determine the viscosity

in terms of the weighted cross sections. The reason we have resorted

here to the usual formulation (or & slight modification of it) is because
the shear stress is directly proportional to the velocity gradients; hence
the velocity gradient can be written as the reciprocal of the viscosity

times the shear stress, which is of the same form as equations (3.25) and

(3.26).

In order to bring the set of equations for the viscosity into the
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same form as the set (3.24) through (3.26) for the heat flux and diffu-
sion, it wight be more convenient he problen toc obt
analogous equations to (3.27) and (3.29) for the reciprocal of the
viscosity (i.e., equation (3.27) would be replaced by an equation of
the :'c‘orm;,l-7 = ch ﬁj), but at present it does not seem that the addi-
tional labor ii justified.

The results obtained so far are valid for single temperature
monotomic gases only. They are, however, a good approximation for
single temperature polyatomic gas mixtures with one exception; that
is, equation (3.17) must be wodified to take into account the internal
motion. In order to accomplish this two things rmst be done. First,
the translation enthalpy of species j, Q% %;), which multiplies gj in
equation (3.17) mst be replaced by the total enthalpy (translational
plus internal) of species J and second, a term must be added which takes

into account the Tucken correction. This is carried out in Appendix C.

We have shown there that the term

Cv
}-Z 1ni:.'j c
2 &< m, “j
dJ dJ
mmst be added to equation (3.17) in order to bring in the Eucken correc-
tion where j% is given by equation (C-9) and (C-10).

If one of the species present is electrons, it might be desirable
to take into account the possibility that the electrons are at a differ-
ent temperature than the rest of the species. This can be accomplished
when the isotropic part of the electron distribution function is approxi-

mately Maxwellian if the terms of the order of the square rcot of the
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electron-heavy particle mass ratio are neglected in the electron-heavy
particle collision integrals. In this case the quation (2.1) for the
electrons will involve a different temperature than the heavy particles.
Because of the decoupling effect of the mass ratio expansion, however,
the solution can be carried out in exactly the same way as was done
above.9

It can be seen from equation (2.18) that if it is necessary to
retain more terms in calculating the collisional effects of say species
1 with itself,* it is only necessary to retain those terms to higher
orders in n and r which appear in the terms where i and j are both one.
This will bring in additional Sgg's, but there will also be an additional
algebraic equation for each additional.fgi. Thus the effect of going to
higher order in the polynomial expansion of one of the species is to
increase the number of fg's referring to that species and to increase

the number of equations by the same amount.

*
This corresponds to retaining higher-order terms in the polynomial
expansions in the Chapman-Enskog procedures when evaluating say the
electron-electron collision integrals.
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IV. THE BOUNDARY LAYER PROBLEM

We shall now proceed to formulate the complete boundary layer prob-
lem using the relations which were derived above. To these linear alge-
braic equations and the first-order differential equations, we now must
add the conservation equations to get a complete set. We shall rewrite
the conservation equations in the form of a set of first-order differen-
tial equations in the coordinate normal to the flow. The terms on the
right side of these equations will involve a convective derivative. 1In
the cases where similarity solutions exist, this convective derivative
becomes a first-order derivative in the similariby variable. These deriva-
tives appearing on the right-hand side can then be eliminated by using
the flux equations. This procedure is illustrated by considering a speci-
fic example--the stagnation point boundary layer. The procedure would
be the same for any similarity boundary layer.,

In cases where no similarity solutions exist, it may be desired to
expand the solutions to the boundary layer equations in a power series
in the coordinate in the direction of flow. If this is done the convec-
tive terms on the right will again yield first-order derivatives in the
coordinate normal to the flow which can be eliminated as in the case for
similarity solutions. Thus in both cases we obtain sets of linear alge-
braic equations and first-order differential equations with each differen-
tial equation containing only one derivative.

In this formulation the effects of chemical reactions and internal
molecular structure will be taken into account in the usual approximate
way; that is, we shall add to the continmuity equation a source term a&

where:



20,

@ oy (4.1
= - (5 )
i chem. react.
. 5 kT . .
and replace the translational Enthalpy 30 of the i'th species by hi’ the
i

translational plus internal enthalpy of the i'th species, in the appro-
priate places.

The total enthalpy of all species h is then given by:

h= 3 ¢, h; (k.2)

Then under the boundary layer approximation:

LA _ A _4 _
;Ji—aai,fi—.)!"i,g—Jq,xo-— v (5.3)

where ? is a unit vector in the x-direction and g“is the unit vector in
the y-direction; where x is in the direction of flow and y is perpendicu-
lar to the boundary. d,, which is defined by equation (7.3-26) of HCB,
now becomes:

n
a2 B

and, therefore, from equation (3.1%), we have:

i
Y
Dy
~
Mlm
¢.<
H N
sR
™
QWQ)
]
D
———

c, . (k.4)
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Using the results of Appendix C (Eq. C-11), equation (3.17T) can be

written as

C

f 1 "int i
-2 h 3. +352Z J €, (.5)
J 3 J vJ 2,j m'j J

Ell—‘

vwhere € is given by equations (C-9) and (C-10).

Since p = nkT and

c,
n i
—_ = — ha
- § mi,we ve
D _e k k.6
v % m (8-%)

Now using equations (3.24%) through (3.26), (3.27), and (3.29) and equa-

*
tion (3.18), we can write down the boundary layer equations as follows:

v _ -83 r8u 1 D@ _

..5..y_._.—r —LsTl—;-D—t—— 8—0, l (l‘..?)
3T _ dp Du

37 "% (&.8)
2(-q) _ _1._2

TRl RS -9
2J4 Do,

37 - % "’B‘E‘ (4.10)
2u__1

> 1’-,- (4.11)
9ci f

=5 =h§ E s £, -8% Fiy 35 (k.12)

*
Equations (%.7) through (4.10) are merely the conservation equations
simplified by the boundary layer approximations, and equation (4.11) is

the relation between the shear stress and velocity gradient in the boundary

layer. See, for example, reference 10.
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2T _16
5= T? D, Ej (k.13)
cV
-9=32 Gl & %m0t T e (k-18)
J J J J J
1 =23 5 ¥ (h-23)
e
h=% ¢, h (k.16)
J
k
P=¢fCT2X Fci ()-l-l'-()
i ™
l=z c. ()-l-.l8)
i 1
1=§: Gy ¥ (4.19)
T Ay dyc I3y, 8 (k.20)
J 3
He=-:-L§-TZDf (k.21)
R AL '

where r is the distance from the center line to the inner edge of the
boundary layer in axisymmetric problems, and § equals one for axisym-
wetric flow and zero for plane flow. Equations (%.7) through

(4.11) are just the usual boundary layer equations. The new relations
are given by equations (4.12) through (%.15) and (4.19) and (4.20). For
‘convenience we have listed the definitions of the matrix elements Aij’

B. -, D'j’ Ei

F.., G.., and H, in Table 1.
1J 1J J

37 71
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TABLE T
Definition of Matrix Elements
A= "3%5}: (84 - 311)(?5&'%’523‘9(1 2 -3a%)
. .. m, . ~c,(m, + m ) ns
B..-—-——?—-Z 2 e 2V e J /()I_QL__ (2;2)
ij mf(’:{z mj+m1 5 mj+m)‘ﬂ
2 2 2 2
P {831 my ~ 81y Mgl - “‘2)} (—d__yq(L1)
BV AR (m; + mp)° mt g
J
: ‘B e, _?l__L 3 _ 3 L2) 3 (@2 390
i 3 (851 8y [(m +m) @G - 205 - 2@ %P - 304 M)
m, - um
D, =-_,)—%}<2,(;’%7) {0(2’2) 2 (L—i) .Q.(l’l)
PR R PR MO
EiJ' h 3-—1;'1'-’% c,f S mj + ml 1 ( + m ) (‘Q(l > Sﬂ(-:;-(l))
.2 By 851 - T Bps - ulmy - “‘1)} (1,1)
F:Lj Mfcl { oy +mj nﬂj
-2 ! (1,1) , 3 2
Y {5 n(8,; - 8,000 + 3, (8,;+ 3,0
_ 8 m, c l,l
HJ_M} m‘e Emj'éa(i.])
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We now consider a special case of equations (k.7) through (4.18)
for the stagnation point. Let the subscript s refer to the free stream

conditions. We have

u = ax
s

c, = const.
is

T = const.
s

For this problem there exists a similarity variable 7} given by

7 - [g;_;@ﬁ]% f" par

where bo is some constant reference quantity. In order to use the accepted
nomenclature, we shall use 7 (which has previously been used for the vis-

cosity)as the similarity variable, and we shall designate the viscosity Dby

A
We have from the total continuity and momentum equations (4.7) and
(5.7)
u 1
A (b.22)
1
v o= -/% [(8 + 1) abo] f(mn) (k.23)
P _ 1 ”s 172 b,
an - TTFsY 7;'-[1"] )-17"@' (4. 24)
df 1
& = f (k.25)
! b
af _ _ o
T - 5 P (k.26)
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also
r 8 3
d _j(1+8)aj®_d
ay" [ bo ] /ad-')’ (h-?(')
and for all equations after (L4.2), we have
,o%t. = -p(1+ 8)af%—,—' . (k.28)
Equations (4.9) and (4.10) become
1
a(-q) _ - 2 . dh
di,,Tl- - tbo a(l + 8)] £ (4.29)
d.j. W -%‘ :‘l de,
d"’l _ (al [(l +b8) a] + [bo a(l+ 8) f?i-‘T;:’ (%.30)
o
but
de. dh
dh i dT
‘&‘71=§ 1dn+§ ¢ 'ﬁ'd‘_q ’
dh,
= —= .

and the specific heat of the i'th species ¢ 5 is given by cPi 3T
The total specific heat is cp is

T e ey
hence
de
dh i aT
m-In Wt (%.31)
Equations (4.12) and (4.13) become
1
2
|-

Dci_ [l+bo BJ E

an

1 .
{hé: 25 & '8§ Fi5 93

and
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dT__]_,éT[ P, J
1+ a

1
?’— 5 (22 D, e . (’433)

j 9
Substituting (4.33) and (4.32) into (4.31) and then substituting this

into (%.29), we get:

i

dg-q} o) [ . 1
= — F..h, j. -3 E.. h, &.
an 2 f? § i J 221: ? id 1£J

2¢ T
P
- — ?Dj fj], (L.34)

and substituting equation (4.32) into equation (4.30}, we get

d;  wy 1+ 8) a]% bt [ ]
. [ = +7°— £ %‘Eij §;-22 Fi; 950 (h.35)

o J

+
Let us define q+, ,j’.lL, ¢I, and Xi by

@ =-of [arv 8)5| 2 (.36
ii=3,/ [a(l + 8) bo] : (4.37)
£ = &/ [a(l +8) bo] : (1.38)

1

2

eJi’ €./ [a(1+ S)bO] ,

and we have upon collecting the results

ap 1 o 1g P
?17)=(1+75‘7[,os'(f)]')‘—?of2 (%.39)




(4.l

(k.45)

(k.16)

(k.47)

(1.48)

(k.49)

(4.50)

(k.51)

(+.52)



+ + -
Hye; =5 T2 Dy & (4.53)

For the frozen boundary layer we set w; = 0 in equation (k.43). For
the equilibrium boundary layer c; = ¢ (T) only. Hence the left-hand

side of equation (4.4th) can be written as:

% ar
dar an

%% can then be eliminated between equations (L.4k) and (L4.45). The
result is a set of linear algebraic equations in E : and JI After

doing this equation (4.43) can be dropped.
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V. SUMMARY

In this report a modification to the usual Chapman-Enskog procedure
for obtaining normal solutions to the Boltzmann equation has been developed
in order to obtain relations between the fluxes appearing in the conserva-
tion equatiomsand the gradients of the physical quantities which are in a
more convenient form for numerical boundary layer calculations involving
many species than those that would be obtained by the usual procedures.

The results of this modified Chapman-Enskog procedure are given by equa-
tions (3.20) through (3.26) with equation (3.17). These results are then
combined with the conservation laws in Part IV and applied to the boundary
layer problem. The resulting set of boundary layer equations (egs. k4.7
through 4.21 with the definitions of Table I) can be seen to consist of
first-order differential equations plus a set algebraic equations which
are linear in the fluxes. This is a convenient form for numerical calcula-
tions. When the equations are applied to a boundary layer for which a
similarity variable exists (egs. (%4.39) through (4.53)), the differential
equations become ordinary differential equations, and the formulation
becomes particularly suited for numerical calculations (which would involve
only integration plus matrix inversion).
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APPENDIX A
We shall now prove that
rn, _1 [j n, 2 r,. 2 ]
and
rn, 1 [ r,. 2 n, 2 ]
iy G ) =38 LSO Wy, sTOW) Wy |5 (4-2)

Much of the transformation used follows chapter 9 of Chapman and Cowling2

closely, and most of the notation is taken from there.
From equation 10, section 4.4 of Chapman and Cowling, it is easily

verified that

rny _ nr -

By definition the n'th Sonine Polynomial of order 3/2 is the coefficient

n . . *
of t© in the expansion of:
(l - t)-5/2 e-xt/(l-t)

or:

-5/2 W5 £/(1-t)

(1-8) " e -2 st (a-k)
and
-5/2 /-4 W Ps/0-d)
(1 -4) [Mie -¥ e J
r,..2 ! '2
) I‘Z=:O ["Wi S (Wi) - ‘Hi Sr(wi )]a/r »
*

C. ¥. Chapman & Cowling2 Section T.5
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i}

21 - L), ve have:

- - W W s
(1-,/)5/2(1—1:) 5/25%;7///f§0) fgo)yje I, e
173

and upon setting T= t/(1 - %), S

W'e
' -W.
1
-H e )gij bdb de 4y, dyj
nr r n
I. A-
}3“ (547 ¢ (a-5)

From equation (6) of Section 3.41 in Chapman and Cowling, we have

S: =815 M58 0 8575 M &y

where: M, = mi/(mi + mj) ; M. =m /(mi +m,)

(my +mg) Gy 5my Gy v myG5-m G

1]
B
+
g
[}
=
e}
+
8
Q

-

and 91 is the velocity of a molecule of species i; defining ~go by

G =G,.~-vVv ,
“wo ~ij o
we have
w1=vo-Mj§31;~Y'j=Go Mi§jl
2 (G, g.:)

Next we define

m + m, ! [ o m. !
& = —l—_—‘l G r; 1 J . 1
o) 2 kT o? « mi+mj 2kT§31

' mimj 1 |
g = mi+mj‘2k-r§Ji’



-34-
*
and we have

2y MRy oy a2 s +M]i'/2 g

—i i 0 J

w2 g a2y
i i o J ’

{

{
L
e

<
o]

258 (a n)¥?

and

‘b/‘/‘z'f-XQCOSX (A-6)

where X is the deflection angle of the relative velocity in an encounter.
Any function of the velocities of two molecules after encounter may be
transformed into the corresponding function of the velocities before
encounter by taking X = O, (c.f. Chapman and Cowling, p. 152, Section 9.3,
equation 10 and below).

From equation (7.3-13) of HCB we have

m

i i
i57w) €

fgo) =n
i
Using the above definitions and relations in equation (A-5),we get
> nr r.n _
mrdig GO -
-5/2 YN (e s A A AR
(1 -4) (1-1%) ” e Jﬂje J (}jie -W. e

-l

x g, bdb de 4 ¥ ak

*
c.f. equation 7, Section 3.41 of Chapman and Cowling( 2)

) x
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S@-HPa- )R ]]fe"&i’

-

R AL
[

-

W. W,

-W. W, e Y ]g..bdbdedY ac

g i

s a0 e [0 -5, 00

Where

gij bd bd g_’. (A-T)

gy 00+ fflom Lz s e a2sl} s e 00

; (0) = /f{ -Y2- wr -wzs]} LACA b de (A-9)

We now have

2= 02 g o2 py 082 8 R )

J 0 i J ~o

1/2
=Mj,$§+Mia’2+ a(MiMj)/,go-r

—

1
w.2 =M.,&2+M

2 1/2
i i~ o J ¥e- 2(Mi Mj) }90

Hence

2 2 '2 2 . 2 R 2
,&o+ y--sw +'¢'Wj = 113,270+ ljiJ + Q(Mi

Mj)1/2 ("ti"o

-s4, &)



Where
i,, S1+MS+ M1
1 i J
i.., 21 +MS+MT
Ji J i
Let
' 1/2 .
2’=,§0+—-—-(M1MJ) (r& -82)

so that a variable change from ,‘90 to 3’?’is equivalent to a change in

origin in the ,&o space.

/1

2 2 12 o 2 . 2
o+ ¥ 8 W, +-rwj-1ij7)L +1jiX -

R NGRS RN SRR R I

where
J..Fi.. - (M, M/i )(32+ 2 . 2 ST cos X)
iJ Ji 1737713
MiMj(S2 + T2 . 28T cosX)
=l+M, 5+MT I+ NS THT
i J
(1+8)(1+7) - adiMJ.S‘r(l - cos X)
= 1+ MS+ M. T
i J
= {1 - Mj st (1l - cosX)} /(1 - MJ.s - Mi-r) s
or
i = - T - - -
Ji; {1 2 M, MJ.S (1 cosX)} /(1 MJ.S Mir) .




Let
i [ / / \ Y4 Y' !
¥y ety -s¥ )+ ¥
?
then
W, M.1/2 V-Ml./ei”.
-i i - jJ <1
/23 /2
“J j - i J
'y = (M M)l/zv/v'
et B T R
’ 1/2
- -+ + (M, M, Vol on
Z«?’(MJMJ_ MIMJ) (M MJ) 1 43
- 2 _ 2 /2 . 29-2
W =M > -2(MiMJ) ezt M

Then by equation 2 of Section 1.42 in Chapman and Cowling, equation (A-8)

can be rewritten in terms of these new variables as
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_ 1/2[ [ B 2 . )/2] |
By (X = (v M) exp. (-1, 27 - §;, ) (PEr 27, 2) dae
o0
1/2 X . 2 1 2 292
= har(M, M, /{[e.-.. -..b’] =Uu + 2 7 drVde
(M, m,) NG SEENE DICLaRy n
. 2
ST 4 -5/2
32 1/2 f g . 31
=T (Mi Mj) e (113) (2 3_2 + g _7{“1,J) de . (A-10)
since _g’iyfand _/_jg/f‘are odd functions of 2%y and 2*2”"is an even func-
tion and U is the unit tensor.

2y o= (M Mj/ifa) vy Es
P (1/4) M X -M X)) (€x -52) - XS
‘. 2sT zg’,)

.2 2 2,

= (M, Mj/lij) (T ry+s g 4
1 1 N

+ (1/113) {- Mirgg-Mj sy & + (Mis+Mjr)§gj} “L,ff (A-11)

1
and gji which is perpendicu-

Let £ be the unit vector in the plain of gji

lar to gji; then we have

\Q"' 4 =¢Y2cosx

_{Xl'=},{' Xesinx

and X = L{(é, €) only, since once g, 81 are specified, K is completely

determined.

Now we have
(a-12)

X,=§cosx+§b’sinx,

o«

hence
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-

YT = ¥¥cosX + YK ¥sinX (A-13)
¥ ¥ = Y¥cos®X + KK ¥ sin®X (a-14)

+ 2¥K YeosX sinX
-t wt

It is easy to see from Figure 1 that

2w
J K de =0 (a-15)
o e
*
and that
2w 1 o (27
(T xxac -Jg-qar® | e (8-16)
o = < o

We now have from equations (15-a) and (13-a)

2w ' ow
I Yy de = \{Icosz de , (a-17)

o [P0}

and from equations (14-a), (15-a), and (16-a)

2w
g)sinex] f de
e o o

2w o) 2w 5
XX/ de -3— f[ de sin“X (A-18)

o L)

ar
[ 2 e -yt gt

*

Note obviocus tensor character of K K. The result is essentially
obtained by evaluating K K in a particular coordinate system and
then writing it down in an invarient mAnner.

*%
in Chapman and Cowling's notation.
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From equations (1l-a), (17-a), and (18-a), we get

2T 2 2 .2
5 2, - d€ = {(Mi Mj/iij) (r“+ 8" -25s"T cosx)!j

0

+ (l/iij) [- M, ‘!‘-Mj S + (Mi S + Mj'r) cosX]ZX

M.S 7 o
- cosX - [Sg(Mi Mj/ifj) - I-J-— Jz ¥y sin2 }f de

s 2 ey 1
iJ |

i

2m
+ (Mi S + Mj T) cosX -~ 15 cosx} Io

SM 2m 5
- l/llJ RLe {SM - iy -l—-— j de sin” X

ij o]

2w
= Z{(l/iij) (1 - ji,j - cos X) fo de

SM, om N
; -2—’1 (1 + MJ. T) f de sin“ X. (A-19)
=it o}

ij

N‘\Q

Hence substituting equation (A-19) into equation (A-10), we arrive at

(Xx)

i

; 2
=3;. ¥ |
w2 (g2 (14,)2 {% P30 (- gy - cos X)X

5 o bM 2T
+ sin“ X !f -l— (1 + m, r)} [ (A-20)
ij
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From equations (2) and (3) of Section 1.42, p. 22 of Chapman and Cowling,

we have
0
iy ay =o (A-21)

U [X2 ay. (a-22)

-t

Javay -

Wil

Integrating equation (A-20) with respect to }; and using equations (A-21)

and (A-22), we get

(&5 (X)X -

j. X2
o e e S

i3 , - cos x]x2)d€ a¥ .(A-23)

iJ

Comparing (A-23) with equation (14) of Section 9.31 of Chapman and Cowling,

we see that
1
[;Iij (X)a¥ =3y [f B (X) ae a¥ (a-2k)

where ZHi 3 is the H12 appearing in Chapman and Cowling, and ¥ is the
script g used there. Also, from the statement appearing below equation

(4) of Section 9.31 and the definition of B, (0) and Eij (0), we see that
1
[éiij (0) aX _§g ff Hij (0) ae déj . (A-25)

*
Using equations (A-2hk) and (A-25) in equations (A-7) and comparison with

L33
(5) and (2) of Section 9.3 of Chapmn and Cowling show that

*
Also see the statement preceding (2).

Note that our 3{3 is Chapman and Cowling's script é” 5°
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nr r n
Ji5G 1) )Tt
n,r n,r

wll—'

17«1

gX [Sn(Wg) My S F(WE) W ] ij/r t7, (A-26)

and upon equating coefficients of like powers of.4 and t, we have

rn nr 1 n, 2 r, 2
i35G ) =31 =38 [S (wy) uy » 57 (W) l’-’iJ 13 (4-27)

which is the first of the desired results. 1In exactly the same way, we

have
n% ;ij n rjr n
= (1 -j)'5/2 (1 - t)‘5/21r'3 //[ (0) - (X)] gij bd bad (A,-28)
where
2 -2 P uls .
B, (X) = /e ° A W, M, 4 de (A-29)
and since

2 2 2 1/2
Wi o= M e M ET - 2 M)
1 ~
)52+ Y2+ sw s Twr =i B4 1 0%
o) i i iT o J

(o] ~

- 2(M, Mj)l/e (s, ’!' + rv,.\& - )

where

i, 214 M (S+'r),-1j 1+Mj(S+‘r)

We find upon setting

Ll AR PR LAY SRR S VI (8-30)
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following exactly the same procedure as used above and comparing the

o]

esults with those of Section 9.4 of Chapman and Cowling

P4

nr _ rn _-:—L_ [ r, 2 n 2 ] )
RITIS 1) 'éij(i i) = 3J LS (W) My 5 STW) My ) gy (A-31)
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APPENDIX B
Calculation of Some Transport Properties for Simple Cases

Thermal conductivity of a single-component mixture

Consideration of the quantities defined by (3.19; through (3.23)shows

that
Ay =48y =0
Bi; =B =0
(B-1)
Big =By =0
Fij=Fp =0
0(2:2)
Dy =Dy = g (B-2)
From equation (3.26) we have
T _ 16 a(2,2) _
5z- %% ) (B-3)
30k 1 2
S1-"maey 5 (3-4)
From equation(3.17) we have
_ .S g 75 KT 1 gu
" LTn & 32w Q2 ar ’
2 1

or introducing the thermal conductivity )\ , we have

N =32 qiay (C,/m) (8-6)
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From equation (8.2-8) of HCB we have

I~ ~\
\ <y

0(2:2)* 5% r n/kT —%—a—_g— , (B-7)

and in terms of this we have

25\ kT
=33 7;1;1(2,2)* (Cy/m) (3-8)

which is equation (8.2-11) of HCB for the thermal conductivity of
a single-cowmponent gas.
Bipary diffusion coefficient of two-component isothermal mixture

From equations (3.26)and (3.2%)and (3.18), we have

~§l = - j2 . (B-9)
From equation (3.13) we have

2 16 . €2 T (1,1)
7 % 5w h g Ea)8a

ety

6 2" .
- I e @B d et

16
3k’1‘(m1+m) g Mk

23"



since ¢yt C,y= 1, and n,m, gl = éj«l
Or

. nm,, 3kT(ml + mg) .
=1~ ‘n.@ 1,1) <2

(
1 16 w, m, §) o1

From equation (7.4-3) of HCB, we have

2
- _ n
3y = n_ 7 [ml R LI P N ]

since D, =0 (c.f. top p. 487 in HCB).

Comparing equations (B-10) and (B-11), we have

D = 3kT(m1 N m2) . 1
12 16 n m, m, Q(;il)

(B-10)

(B-11)

(B-12)

which is the same as equation (7.4-38) of HCB for the binary diffu-

sion coefficient of a two-component mixture.
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APPENDIX C
Bucken Correction

We have mentioned at the end of Part III that in order to apply
the results obtained above to polyatomic gases, it is necessary to
add a term to the expression for the heat flux. This can be seen from

the results of reference (11)where it is shown that in the "Eucken limit":

8 on = 7 i 1133 (c-1)

where Snon is the heat flux that would be observed if the gas were mona-

tomic and g‘ is the actual heat flux. Hence the term:

3T
- {xint X (c-2)

mst be added to the expression (3.17) in order to make our results applica-
ble to polyatomic gases.

In order to add this correction term in a way that is in the form of
the results derived above, we shall introduce a new set of flux-like

quantities, €5 (related to the flux of internmal energy) which are propor-

tional to g 3 . We shall then use equation (3.26) to eliminate the 33'%

dependence of the €;- It is further shown in reference (11) that:

[)\int] 1 =Zi: " G, _ [Z i ] ’ (c-3)

and from HCB (eq. T.4-38), we have

[ ] 16;1 & 9,%1, iy ° (c-k)

ij



Hence

[xint] 1 =Ei 2 Cy

6 #. Py , ""l
int, li-]3__ ; k;"] P ‘Q(ijl)] > (C-5)
1

Let us require that sj satisfy the relation:

%Z ™y - & = [)‘intll—a':% (c-6)

-1
3T 8 Z oy °e ~(1,1) .
5' - .Q, s ’ (C-f)
J 97% [3k1‘ y, ni( + mJ. cj A

and if we define Hj by

8 m, e 1,1
Hj=3kT§,mjimj-cfa(jj) , (c-8)

L]

we have using equation (3.26) to eliminate -g——— from equation (C-T)

G

_ 16 -
H, 53-5'13?133& : (¢-9)

Hence adding (C-2) to the expression (3.17) and using (C-6), we have

c
V.
_5 1 5 kP, ., . 1 int,
- g =+ kT = - 2 2= = J -
- E zd:mj & %:(2‘“3 Jj+2§: o & (00

»t
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Equations (C-8), (C-9), and (C-10) now bring in Bucken correction com-

pletely.




-50-

REFERENCES

Fay, J. and Kemp, N., "Theory of Stagnation-Point Heat Transfer

in a Partially Ionized Diatomic Gas," AIAA Journal, vol. 1, No. 12,
(Dec. 1963).

Finson, M., "Theory of Stagnation-Point Heat Transfer in Ionized
Monatomic Gases," Master's Thesis, M.I.T., (1964).

Hirschfelder, 0., Curtiss, F., and Bird, R., Molecular Theory of

Gases and Liguids (John Wiley & Sons, Inc., New York, 1954) pp. 4hl-5hk,

Chapman, S. and Cowling, T., The Mathematical Theory of Non-uniform

Gases (Cambridge University Press, 1960).

Blottner, A., "Chemical Nonequilibrium Boundary layer," AIAA Journal,
vol. 2, No. 2, (Feb. 1964).

Kolodner, I., "Moment Description of Gas Mixtures-I,” N.Y.U. Institute
of Mathematical Sciences (Magneto-Fluid Dynamics Division), Report
A.E.C., Contract No. AT (30-1)-1480, 1957.

de Voto, 5., "Transport Properties of Partially Ionized Monatomic
Gases," Quarterly Technical Summary Report on Direct Energy Conver-
sion Systems, Supplement 2, Contract AF 49(638)-1123, Stanford
University, Stanford, Cal. (1964) pp. 35-36.

Hodgnan, C. (editor), C.R.C. Tables (Chemical Rubber Publishing Co.,
1961).

Wilkins, D. and Gyftopoulos, E., "Transport Phenomena in Low Energy
Plasmas," Internal Report Research Laboratory for Electronics, M.I.T.

(1965) pp. 1-3.




10.

-51-

Moore, F. (editor), Theory of Laminar Flows, High Speed Aerodynamics

and Jet Propulsion Series, vol. IV, Princeton University Press (1964)
p. X09.

Monchick, L., Yun, K., and Mason, E., "A Formal Kinetic Theory of
Transport Phenomena in Polyatomic Gas Mixtures,” Journal of Chemical

Physies, vol. 39, No. 3, (1963).



-52—

FIGURE 1




